From BMPs to Leading Practices

RWA
May 10, 2016

Members Value 6 Core Activities

- Research & Evaluation
- Information Clearinghouse
- Promotion of Modern Data Analytics

- "Tools" and "Schools" (training)
- Consensus-seeking (low hanging fruit)
- Technical advisor to state and federal agencies

Members Value: Bringing People Together

Professionals

- Plenaries
- Conferences & Workshops

Stakeholders

- Nonprofits
- Water Industry
- Sustainable Landscaping

In 25th Anniversary Year

- Looking Back: BMPs
 - Remain valuable for utilities just starting out
- Looking Forward: New Paradigm
 - A more robust and effective approach useful for <u>all</u> members
 - Groups 1 <u>&</u> 2

Council Strategic Planning From "BMPs" to "Leading Practices"

A system of effective tools

Design Parameters

- Utilities or 3d
 Parties set Goals or
 Targets
- Council helps
 Utilities meet or exceed goals
- Utilities Self-select categories
- No 1-size for all

- No assumptions re: rate of progress
- No pass/fail grading
- Recognize largely utility controlled actions & those needing collaboration
- Data collected must be simple, easy, and nonduplicative

Overall Framework

	Measures to take to make:				
Category	Initial Progress	Moderate	Advanced	Leading	
		Progress	Progress	Practice	
	Future demand is based upon:				
	Current water	Econometric	Factors that are	Detailed end-	
	use factors	analysis	varied over time	use analysis	
Demand	(e.g., on a per-	(i.e., establishing	(e.g., to account	(includes climate	
	capita or land-use	statistical	for conservation	change)	
Forecasting	basis) or trend	relationship	and efficiency		
	analysis (i.e.,	between water	measures)		
	regression)	demand and			
		price, income,			
		employment, etc.)			

New Paradigm: 4 Elements

- 1. Categories
- 2. Measures
- 3. Steps
- 4. Metrics

1. Categories

Broad groups of practices, programs and approaches

• that can improve water use efficiency and often provide related benefits.

Categories show utilities where water savings and related benefits may be found.

Possible Categories

- 1. Demand Forecasting
- 2. Cost-Effectiveness Evaluations
- 3. Customer Incentive Programs
- 4. Water Use Data Collection
- 5. Program Savings Verification
- 6. Metering practices

Possible Categories

- 7. Sustainable landscapes
- 8. Billing practices
- 9. Water loss control and leak notification programs
- 10. Stakeholder outreach and involvement
- 11. Partnerships and collaborations
- 12. Public information and education

Division of Categories

- Matters largely under utility control
 - E.g., Demand Forecasting
 - Billing practices
- Matters largely requiring collaboration or partnerships
 - Landscaping Supply Chain changes
 - Working with HOAs
 - Codes and Standards development

2. Measures

In a given Category ...

 the specific programs, approaches and practices taken to seek water savings and related benefits.

Measures show utilities how the job can get done.

Possible Measures for "Demand Forecasting"

- Use current water use factors
 - —on a per-capita or land-use basis, or trend analysis (i.e., regression)
- Use econometric analysis
 - establish statistical relationships between, e.g., water demand and price, income,

Possible Measures for "Demand Forecasting"

- Use factors that are varied over time
 - to account for, e.g., conservation measures
- Develop detailed end-use analyses
 - include climate change

3. <u>Steps</u>

In a given Category ...

 the <u>sequence</u> of measures taken toward increased effectiveness.

Steps show utilities how to get the job done better.

Possible Steps for "Demand Forecasting"

- Basic Progress:
 - Use Current Water Use factors
- Moderate Progress:
 - Use Econometric analysis
- Advanced Progress
 - Use Factors varied over Time
- Leading Progress
 - Develop Detailed end-use analyses & include climate change

4. Metrics

Agreed upon Criteria

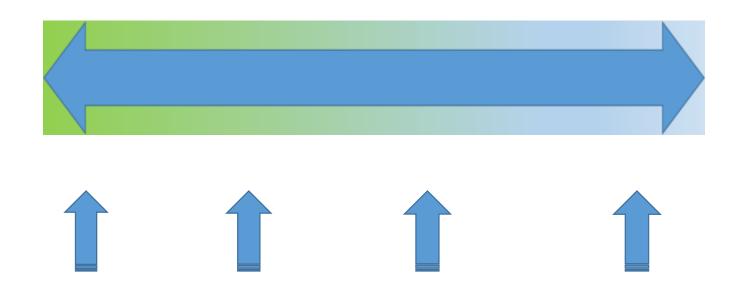
- to Measure Progress
- so utilities can choose their path forward
- And the Council can acknowledge leaders and help others

Metrics allow utilities to map their location and direction toward leading practices.

Example: Benchmark Year

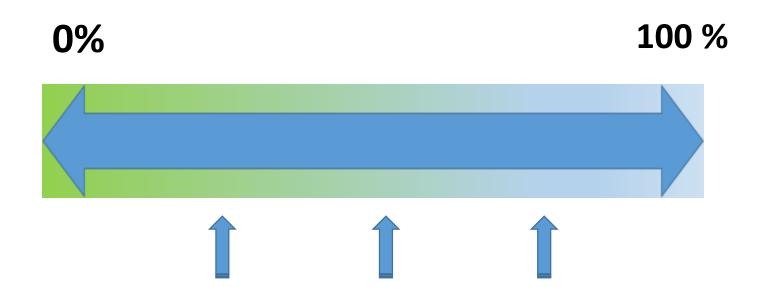
	Measures to take to make:				
Category	Initial Progress	Moderate	Advanced	Leading	
		Progress	Progress	Practice	
	Future demand is based upon:				
	Current water	Econometric	Factors that are	Detailed end-	
	use factors	analysis	varied over time	use analysis	
Demand	(e.g., on a per-	(i.e., establishing	(e.g., to account	(includes climate	
	capita or land-use	statistical	for conservation	change)	
Forecasting	basis) or trend	relationship	and efficiency		
	analysis (i.e.,	between water	measures)		
	regression)	demand and			
		price, income,			
		employment, etc.)			

Survey Year: Benchmark +3


	Measures to take to make:				
Category	Initial Progress	Moderate	Advanced	Leading	
		Progress	Progress	Practice	
	Future demand is based upon:				
	Current water	Econometric	Factors that are	Detailed end-	
	use factors	analysis	varied over time	use analysis	
Domand	(e.g., on a per-	(i.e., establishing	(e.g., to account	(includes climate	
Demand	capita or land-use	statistical	for conservation	change)	
Forecasting	basis) or trend	relationship	and efficiency		
	analysis (i.e.,	between water	measures)		
	regression)	demand and			
		price, income,			
		employment, etc.)			

More Possible Metrics

- SFR Indoor Residential Efficiency
- Irrigation Efficiency


Single-family Indoor Residential Efficiency

25 gpcd 75 gpcd

Indoor Gallons Per Capita Per Day

Irrigation Efficiency

Percent of Local Evapotranspiration Applied to Landscape

Additional Matters to Resolve

- 1. Meaning of Council Membership?
- 2. Collective Goals for Council?
- 3. Metrics—selection & calculation?
- 4. Progress—how determine and display?
- 5. Future Role of BMP Reporting?